Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
HIV Med ; 25(2): 212-222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775947

RESUMO

OBJECTIVES: The main objective of this analysis was to evaluate the impact of pre-existing drug resistance by next-generation sequencing (NGS) on the risk of treatment failure (TF) of first-line regimens in participants enrolled in the START study. METHODS: Stored plasma from participants with entry HIV RNA >1000 copies/mL were analysed using NGS (llumina MiSeq). Pre-existing drug resistance was defined using the mutations considered by the Stanford HIV Drug Resistance Database (HIVDB v8.6) to calculate the genotypic susceptibility score (GSS, estimating the number of active drugs) for the first-line regimen at the detection threshold windows of >20%, >5%, and >2% of the viral population. Survival analysis was conducted to evaluate the association between the GSS and risk of TF (viral load >200 copies/mL plus treatment change). RESULTS: Baseline NGS data were available for 1380 antiretroviral therapy (ART)-naïve participants enrolled over 2009-2013. First-line ART included a non-nucleoside reverse transcriptase inhibitor (NNRTI) in 976 (71%), a boosted protease inhibitor in 297 (22%), or an integrase strand transfer inhibitor in 107 (8%). The proportions of participants with GSS <3 were 7% for >20%, 10% for >5%, and 17% for the >2% thresholds, respectively. The adjusted hazard ratio of TF associated with a GSS of 0-2.75 versus 3 in the subset of participants with mutations detected at the >2% threshold was 1.66 (95% confidence interval 1.01-2.74; p = 0.05) and 2.32 (95% confidence interval 1.32-4.09; p = 0.003) after restricting the analysis to participants who started an NNRTI-based regimen. CONCLUSIONS: Up to 17% of participants initiated ART with a GSS <3 on the basis of NGS data. Minority variants were predictive of TF, especially for participants starting NNRTI-based regimens.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Infecções por HIV/epidemiologia , HIV-1/genética , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Inibidores da Transcriptase Reversa/uso terapêutico , Soropositividade para HIV/tratamento farmacológico , Sequenciamento de Nucleotídeos em Larga Escala , Carga Viral , Farmacorresistência Viral/genética
2.
Evol Lett ; 7(6): 389-400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045720

RESUMO

Pathogenic bacteria respond to antibiotic pressure with the evolution of resistance but survival can also depend on their ability to tolerate antibiotic treatment, known as tolerance. While a variety of resistance mechanisms and underlying genetics are well characterized in vitro and in vivo, an understanding of the evolution of tolerance, and how it interacts with resistance in situ is lacking. We assayed for tolerance and resistance in isolates of Pseudomonas aeruginosa from chronic cystic fibrosis lung infections spanning up to 40 years of evolution, with 3 clinically relevant antibiotics: meropenem, ciprofloxacin, and tobramycin. We present evidence that tolerance is under positive selection in the lung and that it can act as an evolutionary stepping stone to resistance. However, by examining evolutionary patterns across multiple patients in different clone types, a key result is that the potential for an association between the evolution of resistance and tolerance is not inevitable, and difficult to predict.

3.
PLoS Comput Biol ; 19(1): e1010756, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36595537

RESUMO

BACKGROUND: Infection with human immunodeficiency virus type 1 (HIV) typically results from transmission of a small and genetically uniform viral population. Following transmission, the virus population becomes more diverse because of recombination and acquired mutations through genetic drift and selection. Viral intrahost genetic diversity remains a major obstacle to the cure of HIV; however, the association between intrahost diversity and disease progression markers has not been investigated in large and diverse cohorts for which the majority of the genome has been deep-sequenced. Viral load (VL) is a key progression marker and understanding of its relationship to viral intrahost genetic diversity could help design future strategies for HIV monitoring and treatment. METHODS: We analysed deep-sequenced viral genomes from 2,650 treatment-naive HIV-infected persons to measure the intrahost genetic diversity of 2,447 genomic codon positions as calculated by Shannon entropy. We tested for associations between VL and amino acid (AA) entropy accounting for sex, age, race, duration of infection, and HIV population structure. RESULTS: We confirmed that the intrahost genetic diversity is highest in the env gene. Furthermore, we showed that mean Shannon entropy is significantly associated with VL, especially in infections of >24 months duration. We identified 16 significant associations between VL (p-value<2.0x10-5) and Shannon entropy at AA positions which in our association analysis explained 13% of the variance in VL. Finally, equivalent analysis based on variation in HIV consensus sequences explained only 2% of VL variance. CONCLUSIONS: Our results elucidate that viral intrahost genetic diversity is associated with VL and could be used as a better disease progression marker than HIV consensus sequence variants, especially in infections of longer duration. We emphasize that viral intrahost diversity should be considered when studying viral genomes and infection outcomes. TRIAL REGISTRATION: Samples included in this study were derived from participants who consented in the clinical trial, START (NCT00867048) (23), run by the International Network for Strategic Initiatives in Global HIV Trials (INSIGHT). All the participant sites are listed here: http://www.insight-trials.org/start/my_phpscript/participating.php?by=site.


Assuntos
Infecções por HIV , Humanos , Carga Viral/genética , Mutação , Infecções por HIV/epidemiologia , Genoma Viral/genética , Progressão da Doença , Variação Genética/genética
4.
J Virol Methods ; 312: 114648, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36368344

RESUMO

In 2020, the novel coronavirus, SARS-CoV-2, caused a pandemic, which is still raging at the time of writing this. Here, we present results from SpikeSeq, the first published Sanger sequencing-based method for the detection of Variants of Concern (VOC) and key mutations, using a 1 kb amplicon from the recognized ARTIC Network primers. The proposed setup relies entirely on materials and methods already in use in diagnostic RT-qPCR labs and on existing commercial infrastructure offering sequencing services. For data analysis, we provide an automated, open source, and browser-based mutation calling software (https://github.com/kblin/covid-spike-classification, https://ssi.biolib.com/covid-spike-classification). We validated the setup on 195 SARS-CoV-2 positive samples, and we were able to profile 85% of RT-qPCR positive samples, where the last 15% largely stemmed from samples with low viral count. We compared the SpikeSeq results to WGS results. SpikeSeq has been used as the primary variant identification tool on > 10.000 SARS-CoV-2 positive clinical samples during 2021. At approximately 4€ per sample in material cost, minimal hands-on time, little data handling, and a short turnaround time, the setup is simple enough to be implemented in any SARS-CoV-2 RT-qPCR diagnostic lab. Our protocol provides results that can be used to choose antibodies in a clinical setting and for the tracking and surveillance of all positive samples for new variants and known ones such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) Delta (B.1.617.2), Omicron BA.1(B.1.1.529), BA.2, BA.4/5, BA.2.75.x, and many more, as of October 2022.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Glicoproteína da Espícula de Coronavírus/genética , Mutação
5.
Front Immunol ; 13: 906328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874679

RESUMO

Background: Knowledge of the genetic variation underlying Primary Immune Deficiency (PID) is increasing. Reanalysis of genome-wide sequencing data from undiagnosed patients with suspected PID may improve the diagnostic rate. Methods: We included patients monitored at the Department of Infectious Diseases or the Child and Adolescent Department, Rigshospitalet, Denmark, for a suspected PID, who had been analysed previously using a targeted PID gene panel (457 PID-related genes) on whole exome- (WES) or whole genome sequencing (WGS) data. A literature review was performed to extend the PID gene panel used for reanalysis of single nucleotide variation (SNV) and small indels. Structural variant (SV) calling was added on WGS data. Results: Genetic data from 94 patients (86 adults) including 36 WES and 58 WGS was reanalysed a median of 23 months after the initial analysis. The extended gene panel included 208 additional PID-related genes. Genetic reanalysis led to a small increase in the proportion of patients with new suspicious PID related variants of uncertain significance (VUS). The proportion of patients with a causal genetic diagnosis was constant. In total, five patients (5%, including three WES and two WGS) had a new suspicious PID VUS identified due to reanalysis. Among these, two patients had a variant added due to the expansion of the PID gene panel, and three patients had a variant reclassified to a VUS in a gene included in the initial PID gene panel. The total proportion of patients with PID related VUS, likely pathogenic, and pathogenic variants increased from 43 (46%) to 47 (50%), as one patient had a VUS detected in both initial- and reanalysis. In addition, we detected new suspicious SNVs and SVs of uncertain significance in PID candidate genes with unknown inheritance and/or as heterozygous variants in genes with autosomal recessive inheritance in 8 patients. Conclusion: These data indicate a possible diagnostic gain of reassessing WES/WGS data from patients with suspected PID. Reasons for the possible gain included improved knowledge of genotype-phenotype correlation, expanding the gene panel, and adding SV analyses. Future studies of genotype-phenotype correlations may provide additional knowledge on the impact of the new suspicious VUSs.


Assuntos
Exoma , Doenças da Imunodeficiência Primária , Estudos de Associação Genética , Humanos , Doenças da Imunodeficiência Primária/diagnóstico , Doenças da Imunodeficiência Primária/genética , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
6.
Genome Med ; 14(1): 47, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35505393

RESUMO

BACKGROUND: In early 2021, the SARS-CoV-2 lineage B.1.1.7 (Alpha variant) became dominant across large parts of the world. In Denmark, comprehensive and real-time test, contact-tracing, and sequencing efforts were applied to sustain epidemic control. Here, we use these data to investigate the transmissibility, introduction, and onward transmission of B.1.1.7 in Denmark. METHODS: We analyzed a comprehensive set of 60,178 SARS-CoV-2 genomes generated from high-throughput sequencing by the Danish COVID-19 Genome Consortium, representing 34% of all positive cases in the period 14 November 2020 to 7 February 2021. We calculated the transmissibility of B.1.1.7 relative to other lineages using Poisson regression. Including all 1976 high-quality B.1.1.7 genomes collected in the study period, we constructed a time-scaled phylogeny, which was coupled with detailed travel history and register data to outline the introduction and onward transmission of B.1.1.7 in Denmark. RESULTS: In a period with unchanged restrictions, we estimated an increased B.1.1.7 transmissibility of 58% (95% CI: [56%, 60%]) relative to other lineages. Epidemiological and phylogenetic analyses revealed that 37% of B.1.1.7 cases were related to the initial introduction in November 2020. The relative number of cases directly linked to introductions varied between 10 and 50% throughout the study period. CONCLUSIONS: Our findings corroborate early estimates of increased transmissibility of B.1.1.7. Both substantial early expansion when B.1.1.7 was still unmonitored and continuous foreign introductions contributed considerably to case numbers. Finally, our study highlights the benefit of balanced travel restrictions and self-isolation procedures coupled with comprehensive surveillance efforts, to sustain epidemic control in the face of emerging variants.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Dinamarca/epidemiologia , Humanos , Filogenia , SARS-CoV-2/genética
7.
Nat Ecol Evol ; 6(7): 979-988, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35618819

RESUMO

Bacteria with increased mutation rates (mutators) are common in chronic infections and are associated with poorer clinical outcomes, especially in the case of Pseudomonas aeruginosa infecting cystic fibrosis (CF) patients. There is, however, considerable between-patient variation in both P. aeruginosa mutator frequency and the composition of co-infecting pathogen communities. We investigated whether community context might affect selection of mutators. Using an in vitro CF model community, we show that P. aeruginosa mutators were favoured in the absence of other species but not in their presence. This was because there were trade-offs between adaptation to the biotic and abiotic environments (for example, loss of quorum sensing and associated toxin production was beneficial in the latter but not the former in our in vitro model community) limiting the evolvability advantage of an elevated mutation rate. Consistent with a role of co-infecting pathogens selecting against P. aeruginosa mutators in vivo, we show that the mutation frequency of P. aeruginosa population was negatively correlated with the frequency and diversity of co-infecting bacteria in CF infections. Our results suggest that co-infecting taxa can select against P. aeruginosa mutators, which may have potentially beneficial clinical consequences.


Assuntos
Coinfecção , Fibrose Cística , Infecções por Pseudomonas , Coinfecção/complicações , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Humanos , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Percepção de Quorum
8.
Euro Surveill ; 27(10)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35272746

RESUMO

Following emergence of the SARS-CoV-2 variant Omicron in November 2021, the dominant BA.1 sub-lineage was replaced by the BA.2 sub-lineage in Denmark. We analysed the first 2,623 BA.2 cases from 29 November 2021 to 2 January 2022. No epidemiological or clinical differences were found between individuals infected with BA.1 versus BA.2. Phylogenetic analyses showed a geographic east-to-west transmission of BA.2 from the Capital Region with clusters expanding after the Christmas holidays. Mutational analysis shows distinct differences between BA.1 and BA.2.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Dinamarca/epidemiologia , Humanos , Epidemiologia Molecular , Filogenia , SARS-CoV-2/genética
9.
PLoS One ; 17(2): e0262898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35120172

RESUMO

BACKGROUND: Single-nucleotide polymorphisms (SNPs) of the glucocorticoid receptor (GR) gene NR3C1 have been associated with an altered sensitivity to glucocorticoids, and thus may alter the therapeutic effects of glucocorticoids. We investigated the prevalence of adrenal suppression after treatment with glucocorticoids and evaluated whether GR SNPs were associated with altered risks of adrenal suppression and metabolic disorders in patients with chronic obstructive pulmonary disease (COPD). METHODS: In an observational prospective cohort study, we recruited 78 patients with severe COPD receiving 5 days glucocorticoid treatment for an exacerbation of COPD. In total, 55% of these patients were also receiving regular inhaled corticosteroids (ICS). Adrenal function was evaluated with a corticotropin test 30 days after the exacerbation. Patients were genotyped for Bcl1, N363S, ER22/23EK, and 9ß SNPs. RESULTS: The prevalence of adrenal suppression (corticotropin-stimulated plasma-cortisol ≤ 420 nmol/L) 30 days after glucocorticoid treatment was 4/78 (5%). There was no difference between carriers and non-carriers of the polymorphisms (Bcl1, 9ß, ER22/23K, and N363S) in corticotropin stimulated plasma-cortisol concentrations. In the haplotype analyses, we included the 50 patients who had a high-sensitivity (76%), a low-sensitivity (4%), or a wild-type (20%) GR haplotype. There was no difference in the frequency of adrenal suppression or metabolic disorders between the two stratified groups: (a) high-sensitivity (Bcl1 and/or N363S) haplotypes vs. (b) low-sensitivity (9ß and/or ER22/23K) plus wild-type haplotypes (p > 0.05). Carriers of the high-sensitivity GR gene haplotype exhibited a steeper decline in stimulated P-cortisol with increased ICS dose (slope, -1.35 vs. 0.94; p = 0.17), compared to the group with low-sensitivity or wild-type haplotypes, respectively. CONCLUSIONS: In total, 5% of patients exhibited insufficient adrenal function. The Bcl1 and N363S polymorphisms did not seem to increase the risk of glucocorticoid suppression or metabolic disorders in adults treated with glucocorticoids for COPD exacerbations.


Assuntos
Glucocorticoides
10.
Clin Microbiol Infect ; 28(7): 990-995, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35124256

RESUMO

OBJECTIVES: It is unclear whether recurrent sputum culture with Pseudomonas aeruginosa from patients with chronic obstructive pulmonary disease (COPD) is caused by intermittent airway carriage by different P. aeruginosa lineages or persistent carriage by the same lineage, and whether lineages genetically adapt during carriage. METHODS: Whole-genome sequencing was performed for P. aeruginosa isolates sampled longitudinally from sputum cultures in patients with COPD who were enrolled in an ongoing randomized controlled trial (clinicaltrials.gov: NCT03262142). RESULTS: A total of 153 P. aeruginosa isolates were sequenced for 23 patients during 365 days of follow-up. Recurrent presence of P. aeruginosa was seen in 19 patients (83%) and was caused by persistence of the same clonal lineage in all but one patient. We identified 38 genes mutated in parallel in two or more lineages, suggesting positive selection for adaptive mutations. Mutational enrichment analysis revealed genes important in antibiotic resistance and chronic infections to be more frequently mutated. DISCUSSION: Recurrent P. aeruginosa was common and carried for a prolonged time after initial detection in the airways of patients with COPD. Recurrence was caused by persistence of the same clonal lineage and was associated with genetic adaptation. Trial data on possible clinical benefits of attempting antibiotic eradication of P. aeruginosa in COPD are warranted.


Assuntos
Infecções por Pseudomonas , Doença Pulmonar Obstrutiva Crônica , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/microbiologia , Sistema Respiratório/microbiologia
12.
Viruses ; 15(1)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36680074

RESUMO

Second primary cancer (SPC) is the second most common cause of death among patients diagnosed with head and neck cancer. This study examined the risk of SPC following oropharyngeal squamous cell carcinoma (OPSCC) and the impact of human papillomavirus (HPV) on survival following SPC. The study was a population-based, retrospective study including all patients diagnosed with OPSCC in eastern Denmark from 2000-2020 who received curative intended treatment. The incidence rate ratio (IRR), age-adjusted incidence rates (AAIR), and hazard ratios (HR) were calculated. A total of 2584 patients with primary OPSCC were included (median follow-up time: 3.1 years), with 317 patients (12.3%) diagnosed with SPC. The risk of SPC was approximately five times the occurrence of cancer in the general population (IRR: 4.96). The median time to SPC after a primary OPSCC was 2.0 years (interquartile range (IQR) = 0.6-4.2 years). HPV-positive (HPV+) patients had a significantly longer median time to SPC, and a significant better survival compared to HPV-negative (HPV-) patients. SPC was most frequently found in lungs, head, and neck (LHN) for HPV- OPSCC patients and lungs followed by gender-specific (prostate, ovaries, or endometrium) for HPV+ OPSCC. There was a significant difference between the two groups when distributed between "within" or "outside" LHN. Patients with SPC outside LHN had a significant better overall survival. This knowledge should be considered during post-treatment surveillance and might guide targeted imaging.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Segunda Neoplasia Primária , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Masculino , Feminino , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Estudos Retrospectivos , Incidência , Neoplasias Orofaríngeas/epidemiologia , Neoplasias Orofaríngeas/patologia , Papillomavirus Humano , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/patologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/terapia , Segunda Neoplasia Primária/epidemiologia , Papillomaviridae/genética
13.
Int J Cancer ; 150(7): 1174-1183, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894151

RESUMO

The increases observed in incidence and survival of oropharyngeal squamous cell carcinoma (OPSCC) have been attributed to human papillomavirus (HPV) infection, but the survival-impact of specific genotypes is poorly understood. We investigated the potential influence of HPV genotypes on survival in HPV-positive (HPV+) OPSCC. All patients with HPV+/p16+ OPSCC and available genotype data within the period 2011 to 2017 in Eastern Denmark were included. Descriptive statistics on clinical and tumor data, as well as overall survival (OS) and recurrence-free survival (RFS) with Cox hazard models and Kaplan-Meier plots were performed. Overall, 769 HPV+/p16+ OPSCC patients were included of which genotype HPV16 accounted for 86% (n = 662). Compared to high-risk non-HPV16 genotypes (HR non-HPV16), HPV16 patients were younger at diagnosis (median years, 60 vs 64), had a higher male to female ratio (3.7:1 vs 2.1:1), and lower performance scores of ≤1 (90%, n = 559, vs 81%, n = 74). Regarding 5-year OS and RFS, no difference was observed between HPV16 and HR non-HPV16 patients. Subgrouping the HR non-HPV16 group into HPV33 (n = 57), HPV35 (n = 26) and "other genotypes" (n = 24) a significantly worse OS in the "other genotypes" group (hazard rate: 2.33, P = .027) was shown. With similar survival results between HPV16 and non-HPV16 genotypes, genotyping in OPSCC is interesting from an epidemiological point of view as well as in vaccination programs, but not a necessary addition in prognostication of HPV+/p16+ OPSCC.


Assuntos
Neoplasias Orofaríngeas/mortalidade , Neoplasias Orofaríngeas/virologia , Papillomaviridae/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Idoso , Feminino , Genótipo , Papillomavirus Humano 16/genética , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais
14.
Microorganisms ; 9(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946144

RESUMO

Hospitalization and treatment with antibiotics increase the risk of acquiring multidrug-resistant bacteria due to antibiotic-mediated changes in patient microbiota. This study aimed to investigate how broad- and narrow-spectrum antibiotics affect the gut microbiome and the resistome in antibiotic naïve patients during neurointensive care. Patients admitted to the neurointensive care unit were treated with broad-spectrum (meropenem or piperacillin/tazobactam) or narrow-spectrum antibiotic treatment (including ciprofloxacin, cefuroxime, vancomycin and dicloxacillin) according to clinical indications. A rectal swab was collected from each patient before and after 5-7 days of antibiotic therapy (N = 34), respectively. Shotgun metagenomic sequencing was performed and the composition of metagenomic species (MGS) was determined. The resistome was characterized with CARD RGI software and the CARD database. As a measure for selection pressure in the patient, we used the sum of the number of days with each antibiotic (antibiotic days). We observed a significant increase in richness and a tendency for an increase in the Shannon index after narrow-spectrum treatment. For broad-spectrum treatment the effect was more diverse, with some patients increasing and some decreasing in richness and Shannon index. This was studied further by comparison of patients who had gained or lost >10 MGS, respectively. Selection pressure was significantly higher in patients with decreased richness and a decreased Shannon index who received the broad treatment. A decrease in MGS richness was significantly correlated to the number of drugs administered and the selection pressure in the patient. Bray-Curtis dissimilarities were significant between the pre- and post-treatment of samples in the narrow group, indicating that the longer the narrow-spectrum treatment, the higher the differences between the pre- and the post-treatment microbial composition. We did not find significant differences between pre- and post-treatment for both antibiotic spectrum treatments; however, we observed that most of the antibiotic class resistance genes were higher in abundance in post-treatment after broad-spectrum treatment.

15.
Cancers (Basel) ; 13(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944901

RESUMO

Copy-number variations (CNVs) have important clinical implications for several diseases and cancers. Relevant CNVs are hard to detect because common structural variations define large parts of the human genome. CNV calling from short-read sequencing would allow single protocol full genomic profiling. We reviewed 50 popular CNV calling tools and included 11 tools for benchmarking in a reference cohort encompassing 39 whole genome sequencing (WGS) samples paired current clinical standard-SNP-array based CNV calling. Additionally, for nine samples we also performed whole exome sequencing (WES), to address the effect of sequencing protocol on CNV calling. Furthermore, we included Gold Standard reference sample NA12878, and tested 12 samples with CNVs confirmed by multiplex ligation-dependent probe amplification (MLPA). Tool performance varied greatly in the number of called CNVs and bias for CNV lengths. Some tools had near-perfect recall of CNVs from arrays for some samples, but poor precision. Several tools had better performance for NA12878, which could be a result of overfitting. We suggest combining the best tools also based on different methodologies: GATK gCNV, Lumpy, DELLY, and cn.MOPS. Reducing the total number of called variants could potentially be assisted by the use of background panels for filtering of frequently called variants.

16.
Virus Evol ; 7(2): veab055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532059

RESUMO

Understanding of pandemics depends on the characterization of pathogen collections from well-defined and demographically diverse cohorts. Since its emergence in Congo almost a century ago, Human Immunodeficiency Virus Type 1 (HIV-1) has geographically spread and genetically diversified into distinct viral subtypes. Phylogenetic analysis can be used to reconstruct the ancestry of the virus to better understand the origin and distribution of subtypes. We sequenced two 3.6-kb amplicons of HIV-1 genomes from 3,197 participants in a clinical trial with consistent and uniform sampling at sites across 35 countries and analyzed our data with another 2,632 genomes that comprehensively reflect the HIV-1 genetic diversity. We used maximum likelihood phylogenetic analysis coupled with geographical information to infer the state of ancestors. The majority of our sequenced genomes (n = 2,501) were either pure subtypes (A-D, F, and G) or CRF01_AE. The diversity and distribution of subtypes across geographical regions differed; USA showed the most homogenous subtype population, whereas African samples were most diverse. We delineated transmission of the four most prevalent subtypes in our dataset (A, B, C, and CRF01_AE), and our results suggest both continuous and frequent transmission of HIV-1 over country borders, as well as single transmission events being the seed of endemic population expansions. Overall, we show that coupling of genetic and geographical information of HIV-1 can be used to understand the origin and spread of pandemic pathogens.

17.
Microb Genom ; 7(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232117

RESUMO

Achromobacter spp. are emerging pathogens in patients with cystic fibrosis (CF) and Achromobacter spp. caused infections are associated with more severe disease outcomes and high intrinsic antibiotic resistance. While conventional CF pathogens are studied extensively, little is known about the genetic determinants leading to antibiotic resistance and the genetic adaptation in Achromobacter spp. infections. Here, we analysed 101 Achromobacter spp. genomes from 51 patients with CF isolated during the course of up to 20 years of infection to identify within-host adaptation, mutational signatures and genetic variation associated with increased antibiotic resistance. We found that the same regulatory and inorganic ion transport genes were frequently mutated in persisting clone types within and between Achromobacter species, indicating convergent genetic adaptation. Genome-wide association study of six antibiotic resistance phenotypes revealed the enrichment of associated genes involved in inorganic ion transport, transcription gene enrichment in ß-lactams, and energy production and translation gene enrichment in the trimethoprim/sulfonamide group. Overall, we provide insights into the pathogenomics of Achromobacter spp. infections in patients with CF airways. Since emerging pathogens are increasingly recognized as an important healthcare issue, our findings on evolution of antibiotic resistance and genetic adaptation can facilitate better understanding of disease progression and how mutational changes have implications for patients with CF.


Assuntos
Achromobacter/genética , Adaptação Fisiológica/genética , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções Respiratórias/microbiologia , Achromobacter/efeitos dos fármacos , Achromobacter/isolamento & purificação , Dinamarca , Progressão da Doença , Metabolismo Energético/genética , Genoma Bacteriano/genética , Estudo de Associação Genômica Ampla , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Interações Hospedeiro-Patógeno , Humanos , Infecções Respiratórias/tratamento farmacológico
18.
mSystems ; : e0052321, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34184916

RESUMO

Bacterial pathogens evolve during chronic colonization of the human host by selection for pathoadaptive mutations. One of the emerging and understudied bacterial species causing chronic airway infections in patients with cystic fibrosis (CF) is Achromobacter xylosoxidans. It can establish chronic infections in patients with CF, but the genetic and phenotypic changes associated with adaptation during these infections are not completely understood. In this study, we analyzed the whole-genome sequences of 55 clinical A. xylosoxidans isolates longitudinally collected from the sputum of 6 patients with CF. Four genes encoding regulatory proteins and two intergenic regions showed convergent evolution, likely driven by positive selection for pathoadaptive mutations, across the different clones of A. xylosoxidans. Most of the evolved isolates had lower swimming motility and were resistant to multiple classes of antibiotics, while fewer of the evolved isolates had slower growth or higher biofilm production than the first isolates. Using a genome-wide association study method, we identified several putative genetic determinants of biofilm formation, motility and ß-lactam resistance in this pathogen. With respect to antibiotic resistance, we discovered that a combination of mutations in pathoadaptive genes (phoQ and bigR) and two other genes encoding regulatory proteins (spoT and cpxA) were associated with increased resistance to meropenem and ceftazidime. Altogether, our results suggest that genetic changes within regulatory loci facilitate within-host adaptation of A. xylosoxidans and the emergence of adaptive phenotypes, such as antibiotic resistance or biofilm formation. IMPORTANCE A thorough understanding of bacterial pathogen adaptation is essential for the treatment of chronic bacterial infections. One unique challenge in the analysis and interpretation of genomics data is identifying the functional impact of mutations accumulated in the bacterial genome during colonization in the human host. Here, we investigated the genomic and phenotypic evolution of A. xylosoxidans in chronic airway infections of patients with CF and identified several mutations associated with the phenotypic evolution of this pathogen using genome-wide associations. Identification of phenotypes under positive selection and the associated mutations can enlighten the adaptive processes of this emerging pathogen in human infections and pave the way for novel therapeutic interventions.

19.
J Infect Dis ; 224(12): 2053-2063, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33974707

RESUMO

BACKGROUND: Understanding the genetic interplay between human hosts and infectious pathogens is crucial for how we interpret virulence factors. Here, we tested for associations between HIV and host genetics, and interactive genetic effects on viral load (VL) in HIV-positive antiretroviral treatment-naive clinical trial participants. METHODS: HIV genomes were sequenced and the encoded amino acid (AA) variants were associated with VL, human single nucleotide polymorphisms (SNPs), and imputed HLA alleles using generalized linear models with Bonferroni correction. RESULTS: Human (388 501 SNPs) and HIV (3010 variants) genetic data were available for 2122 persons. Four HIV variants were associated with VL (P < 1.66 × 10-5). Twelve HIV variants were associated with a range of 1-512 human SNPs (P < 4.28 × 10-11). We found 46 associations between HLA alleles and HIV variants (P < 1.29 × 10-7). HIV variants and immunotypes when analyzed separately were associated with lower VL, whereas the opposite was true when analyzed in concert. Epitope binding predictions supported our observations. CONCLUSIONS: Our results show the importance of immunotype specificity on viral antigenic determinants, and the identified genetic interplay emphasizes that viral and human genetics should be studied in the context of each other.Clinical Trials Registration: NCT00867048.


Assuntos
Genoma Viral , Infecções por HIV/genética , HIV-1/genética , Polimorfismo de Nucleotídeo Único , Carga Viral/genética , Adulto , Epitopos/genética , Feminino , Genoma Humano , Estudo de Associação Genômica Ampla , Genótipo , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Carga Viral/imunologia
20.
J Clin Microbiol ; 59(4)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472899

RESUMO

Achromobacter species are increasingly being detected in patients with cystic fibrosis (CF), and this emerging pathogen is associated with antibiotic resistance and more-severe disease outcomes. Nonetheless, little is known about the extent of transmission and antibiotic resistance development in Achromobacter infections. We sequenced the genomes of 101 Achromobacter clinical isolates (identified as Achromobacter xylosoxidans based on matrix-assister laser desorption ionization-time of flight [MALDI-TOF] or API N20 typing) collected from 51 patients with CF-the largest longitudinal data set to date. We performed phylogenetic analysis on the genomes and combined this with epidemiological and antibiotic resistance data to identify patient-to-patient transmission and the development of antibiotic resistance. We confirmed that the MALDI-TOF or API N20 method was not sufficient for Achromobacter species-level typing and that the population of Achromobacter isolates was composed of five different species, among which A. xylosoxidans accounted for 52% of infections. Most patients were infected by unique Achromobacter clone types; nonetheless, suspected patient-to-patient transmission cases identified by shared clone types were observed in 35% (n = 18) of patients. In 15 of 16 cases, the suspected transmissions were further supported by genome- or clinic visit-based epidemiological analysis. Finally, we found that resistance developed over time. We show that whole-genome sequencing (WGS) is essential for Achromobacter species typing and identification of patient-to-patient transmission, which was revealed for Achromobacter ruhlandii, A. xylosoxidans, and, for the first time, Achromobacter insuavis Furthermore, we show that the development of antibiotic resistance is associated with chronic Achromobacter infections. Our findings emphasize that transmission and antibiotic resistance should be considered in future treatment strategies.


Assuntos
Achromobacter , Fibrose Cística , Infecções por Bactérias Gram-Negativas , Achromobacter/genética , Fibrose Cística/complicações , Resistência Microbiana a Medicamentos , Infecções por Bactérias Gram-Negativas/epidemiologia , Humanos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...